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Anisotropy of the fluorescence spectrum of 1,2,4,5-tetrame-
toxybenzene (TEMB) in EPA matrix at 77K showed a wave-
length dependence indicating that the fluorescence was consisted
of two components. This dual fluorescence can be explained by a
modification of the S1(B2u)! S0(Ag) transition moment of
TEMB through the coupling with a synchronous in-plane or
out-of-plane bending motion of the methoxyl groups.

Dual fluorescence has been a subject of photochemistry
for these three to four decades. It is caused by several kinds of
driving forces such as electron transfer, proton transfer, isomer-
ization, and so on within the molecule in the lowest excited sin-
glet state. We have studied the dual fluorescence phenomena
caused by the large amplitude vibration such as the Jahn–Teller
distortion,1 proton transfer,2 and other molecular deformation as
a model of ultrafast chemical reactions. The dynamics of the
molecular deformation proceeds in picosecond time region to
give large spectral shift in the fluorescence spectra. However,
some deformation only results in a slight spectral shift due to
the small energy change. Conventional fluorescence spectrosco-
py could not distinguish such closely overlapped dual fluores-
cence. We now report a fluorescence polarization study on a dual
fluorescence phenomenon of 1,2,4,5-tetramethoxybenzene3

(TEMB) in 77K matrices to distinguish the selection rules in-
volved therein.

Absorption spectrum of TEMB in cyclohexane showed a
peak corresponding to the S1 S0 transition at 292 nm with a
molar extinction coefficient of 5300mol�1 dm3 cm�1. The width
of the absorption spectrum was 3300 cm�1 (FWHM). Fluores-
cence spectrum of TEMB in cyclohexane showed a largely
Stokes-shifted (6100 cm�1) peak at 360 nm and a spectral width
of 4900 cm�1 (FWHM) (Figure 1). The fluorescence quantum
yield was estimated to be 0.11 and the lifetime was estimated
to be 1.5 ns from this value and the absorption data by the Strick-
ler–Berg formalism.4 The photophysical properties of TEMB in-
dicates that the S1 S0 transition is allowed. Vibrational pro-
gression was not observed either in the absorption or in the
fluorescence spectrum. The broadness of the fluorescence spec-
trum was not changed so much even in the 77K low temperature
matrices, while narrowing of the spectral width and weak vibra-
tional structure was observed in the absorption spectrum. Al-
though fluorescence spectrum of TEMB in 77K EPA matrix
was blue-shited by 1700 cm�1 (peaked at 336 nm), vibrational
structure was not observed and the spectral width was narrowed
by 600 cm�1 as compared to that in cyclohexane at room temper-
ature (Figure 2).5

The width and Stokes-shift of the fluorescence spectrum of
TEMB varied with viscosity of the media employed and also
with polarity in part. This could be attributed to the presence

of two fluorescence components, whose ratio in intensity is relat-
ed to some molecular motion. Electronic transitions obeying dif-
ferent selection rules must have different polarization and will be
distinguished by fluorescence polarization. Fluorescence aniso-
tropy of TEMB measured in 77K EPA matrix was not constant
over the spectral range of 310–420 nm and decreased monoto-
nously from 0:32� 0:04 to 0:10� 0:01 with the increase in
the wavelength of the emission.6 The fluorescence anisotropy
(rð�Þ) was analyzed as a function of wavelength (�) assuming
the overlapping of two fluorescence components (I1ð�Þ and
I2ð�Þ) with proper anisotropy values of r1 ¼ 0:32 and r2 ¼
0:10 with fractions of X1ð�Þ and X2ð�Þ (X1ð�Þ þ X2ð�Þ ¼ 1), re-
spectively. Total fluorescence spectrum (Ið�Þ) was decomposed
into I1ð�Þ and I2ð�Þ solving the simultaneous equations concern-
ing Ið�Þ and rð�Þ (Eqs 1–4).

Ið�Þ ¼ X1ð�ÞI1ð�Þ þ X2ð�ÞI2ð�Þ ð1Þ

rð�Þ ¼ X1ð�Þr1ð�Þ þ X2ð�Þr2ð�Þ ð2Þ

I1ð�Þ ¼ ½ðrð�Þ � r2Þ=ðr1 � r2Þ�Ið�Þ ð3Þ

I2ð�Þ ¼ ½ðr1 � rð�ÞÞ=ðr1 � r2Þ�Ið�Þ ð4Þ

The results are shown in Figure 2. The obtained spectra showed
peaks at 329 and 349 nm with widths of 3600 and 4300 cm�1.
The relative integrated intensity was 1.6 (�0:1):1.0. The relative
intensity of the second band increased to 1.0:2.7 (�0:3) in 77K
MCH/IP matrix which is softer than EPA.7 The variation in the
anisotropy was not due to the inhomogeneity of the matrix or the
presence of rotational isomers. The excitation spectra monitored
at 330 and 380 nm agreed completely.
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Figure 1. Stationary state absorption and fluorescence (excited
at 290 nm) spectra of TEMB in cyclohexane at room tempera-
ture.
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One can estimate the angle between the directions of transi-
tion moments for absorption and fluorescence (!) from fluores-
cence anisotropy measured in isotropic rigid media from Eq 5.8

r ¼ ð3 cos2!� 1Þ=5 ð5Þ

We obtained a set of ! values, 21 and 45� for r1 and r2. This dif-
ference in the direction of the transition moments means that
these emissions obey different selection rules. Group theoretical
discussion, therefore, is required to explain the selection rule for
the two transitions. Since the HOMO and LUMO of TEMB be-
long to the B1g and B3u representations of the D2h point group,

9

respectively, if the methyl groups are ignored for the simplicity,
the S1(B2u) S0(Ag) transition is a symmetrically allowed
transition. Therefore, the fluorescence band with an anisotropy
of 0.32 could be composed of progressions of transitions be-
tween totally symmetric vibrations (a0g! ag) in the S1 and S0
states, respectively. On the other hand, another fluorescence
band should be corresponding to the transition of ag! b1g or
ag ! b3g representations. Since the vibrations of b1g and b3g
are in the same representations as rotations around the x- and
z-axes, respectively, these vibrations would be synchronous in-
plane and out-of-plane bending of oxygen atoms relative to the
benzene ring, ‘‘twisting’’ and ‘‘waving’’ (Figure 3). Incorpora-
tion of the butterfly-like b3u vibration in the S1! S0 transition,
which has been reported for 1,2,4,5-tetrafluorobenzene (TEFB)
to give molecular deformation in the S1 state,10 was ruled out

as an origin of the rotation of the transition moment.11 This could
be due to the difference in the symmetry of the LUMO of TEFB
(Au)

9 and TEMB (B3u) or due to the difference in the electronic
properties of the substituents.

The asymmetric relationship between the absorption and flu-
orescence spectra suggests the deformation of the potential sur-
face of TEMB in the S1 state. Although we could not observe
any evidence for ag! b01g or ag! b03g transitions in the ab-
sorption spectrum,12 it is clear that the TEMB fluorescence con-
tains a component with a rotated polarization possibly due to the
coupling with the b1g or b3g vibration. This dual fluorescence
could explain the media-dependent Stokes-shift and the band
width of TEMB fluorescence in room temperature solutions.
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Figure 3. Possible vibrations which alter the direction of the
transition moment of the S1(B3u)! S0 transition (see text).
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Figure 2. Fluorescence and fluorescence anisotropy spectra of
TEMB in 77K EPA matrix. Dotted and dashed spectra are de-
composed spectra based on the fluorescence anisotropy values
of 0.32 and 0.10, respectively (see text).
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